Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Biomedicines ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: covidwho-20236954

ABSTRACT

COVID-19 vaccines have been widely used to reduce the incidence and disease severity of COVID-19. Questions have lately been raised about the possibility of an association between COVID-19 vaccines and myocarditis, an inflammatory condition affecting the myocardium, or the middle layer of the heart. Myocarditis can be caused by infections, immune reactions, or toxic exposure. The incidence rate of myocarditis and pericarditis was calculated to be 5.98 instances per million COVID-19 vaccine doses delivered, which is less than half of the incidences after SARS-CoV-2 infection. Myocarditis rates in people aged 12 to 39 years are around 12.6 cases per million doses following the second dose of mRNA vaccination. Adolescent men are more likely than women to develop myocarditis after receiving mRNA vaccines. The objectives of this systematic review and meta-analysis are to find out how often myocarditis occurs after receiving the COVID-19 vaccine, as well as the risk factors and clinical repercussions of this condition. Nevertheless, the causal relationship between vaccination and myocarditis has been difficult to establish, and further research is required. It is also essential to distinguish between suggested cases of myocarditis and those confirmed by endomyocardial biopsy.

2.
Materials (Basel) ; 16(8)2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2291425

ABSTRACT

Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 °C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.

3.
Future science OA ; 8(9), 2023.
Article in English | Europe PMC | ID: covidwho-2239681

ABSTRACT

SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery. Plain language summary COVID-19 infection has reported in the development several other infections and co-morbidity in patients. The present review discusses risk and management strategies in patients suffeting from co-infections caused by COVID-19 infection.

4.
Future Sci OA ; 8(9): FSO819, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2239679

ABSTRACT

SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery.


COVID-19 infection has reported in the development several other infections and co-morbidity in patients. The present review discusses risk and management strategies in patients suffeting from co-infections caused by COVID-19 infection.

6.
ACS Appl Mater Interfaces ; 14(51): 56658-56665, 2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2160143

ABSTRACT

The COVID-19 pandemic has speeded up the race to find materials that could help limit or avoid the spread of SARS-CoV-2, while infections by multidrug-resistant bacteria and fungi are now becoming a serious threat. In this study, we developed a novel bio-based lipstick containing cranberry extract, a substance able to inactivate a broad range of microorganisms: enveloped viruses such as bacteriophage Φ6, a surrogate of SARS-CoV-2; non-enveloped viruses including bacteriophage MS2; multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis, a surrogate of Mycobacterium tuberculosis; and the Candida albicans fungus. The proposed antimicrobial lipstick offers a new form of protection against a broad range of microorganisms, including enveloped and non-enveloped viruses, bacteria, and fungi, in the current COVID-19 pandemic and microbial-resistant era.


Subject(s)
Anti-Infective Agents , COVID-19 , Methicillin-Resistant Staphylococcus aureus , Viruses , Humans , Pandemics , SARS-CoV-2 , Anti-Infective Agents/pharmacology , Bacteria , Fungi , Candida
7.
Cell Signal ; 103: 110559, 2023 03.
Article in English | MEDLINE | ID: covidwho-2158569

ABSTRACT

The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines/metabolism , Pandemics/prevention & control , Receptors, Virus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
8.
Cell Signal ; 101: 110495, 2023 01.
Article in English | MEDLINE | ID: covidwho-2068757

ABSTRACT

The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cytokine Release Syndrome , Comorbidity
9.
Int J Biol Macromol ; 222(Pt A): 972-993, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041800

ABSTRACT

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no solid evidence has been found to support any hypothesis on the origin of this virus, and the issue continue to resurface over and over again. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins in 24 geo-locations across different continents. The results showed an evenly uneven distribution of the unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across these 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations studied. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and for the preparation of meeting the challenges of potential future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mutation
10.
Int J Biol Macromol ; 219: 694-708, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-1977349

ABSTRACT

A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.


Subject(s)
COVID-19 , Graphite , 3-Hydroxybutyric Acid , Alginates , Antiviral Agents/pharmacology , Biocompatible Materials/pharmacology , Cell Adhesion , Graphite/pharmacology , Humans , Hydrogels/pharmacology , Methylgalactosides , Polyesters/pharmacology , SARS-CoV-2 , Tissue Engineering/methods , Valerates , Water
11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1957345

ABSTRACT

The aim of this Special Edition is to highlight the exponential work performed in the field of antimicrobial material research from the beginning of the current COVID-19 pandemic [...].


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Humans , Pandemics
12.
Viruses ; 14(5)2022 04 27.
Article in English | MEDLINE | ID: covidwho-1875798

ABSTRACT

Since December 2019, the COVID-19 pandemic, which originated in Wuhan, China, has resulted in over six million deaths worldwide. Millions of people who survived this SARS-CoV-2 infection show a number of post-COVID complications. Although, the comorbid conditions and post-COVID complexities are to some extent well reviewed and known, the impact of COVID-19 on pre-existing congenital anomalies and genetic diseases are only documented in isolated case reports and case series, so far. In the present review, we analyzed the PubMed indexed literature published between December 2019 and January 2022 to understand this relationship from various points of view, such as susceptibility, severity and heritability. Based on our knowledge, this is the first comprehensive review on COVID-19 and its associations with various congenital anomalies and genetic diseases. According to reported studies, some congenital disorders present high-risk for developing severe COVID-19 since these disorders already include some comorbidities related to the structure and function of the respiratory and cardiovascular systems, leading to severe pneumonia. Other congenital disorders rather cause psychological burdens to patients and are not considered high-risk for the development of severe COVID-19 infection.


Subject(s)
COVID-19 , China , Comorbidity , Humans , Pandemics , SARS-CoV-2/genetics
13.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: covidwho-1855644

ABSTRACT

The bacteriophage phi 6 is a virus that belongs to a different Baltimore group than SARS-CoV-2 (group III instead of IV). However, it has a round-like shape and a lipid envelope like SARS-CoV-2, which render it very useful to be used as a surrogate of this infectious pathogen for biosafety reasons. Thus, recent antiviral studies have demonstrated that antiviral materials such as calcium alginate hydrogels, polyester-based fabrics coated with benzalkonium chloride (BAK), polyethylene terephthalate (PET) coated with BAK and polyester-based fabrics coated with cranberry extracts or solidified hand soap produce similar log reductions in viral titers of both types of enveloped viruses after similar viral contact times. Therefore, researchers with no access to biosafety level 3 facilities can perform antiviral tests of a broad range of biomaterials, composites, nanomaterials, nanocomposites, coatings and compounds against the bacteriophage phi 6 as a biosafe viral model of SARS-CoV-2. In fact, this bacteriophage has been used as a surrogate of SARS-CoV-2 to test a broad range of antiviral materials and compounds of different chemical natures (polymers, metals, alloys, ceramics, composites, etc.) and forms (films, coatings, nanomaterials, extracts, porous supports produced by additive manufacturing, etc.) during the current pandemic. Furthermore, this biosafe viral model has also been used as a surrogate of SARS-CoV-2 and other highly pathogenic enveloped viruses such as Ebola and influenza in a wide range of biotechnological applications.


Subject(s)
Bacteriophage phi 6 , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Plant Extracts/pharmacology , Polyesters/pharmacology , SARS-CoV-2 , Virus Replication
14.
J Environ Health Sci Eng ; 20(1): 395-403, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1827384

ABSTRACT

Purpuse: The COVID-19 outbreak has escalated into the worse pandemic of the present century. The fast spread of the new SARS-CoV-2 coronavirus has caused devastating health and economic crises all over the world, with Spain being one of the worst affected countries in terms of confirmed COVID-19 cases and deaths per inhabitant. In this situation, the Spanish Government declared the lockdown of the country. Methods: The variations of air pollution in terms of fine particulate matter (PM2.5) levels in seven representative cities of Spain are analyzed here considering the effect of meteorology during the national lockdown. The possible associations of PM2.5 pollution and climate with COVID-19 accumulated cases were also analyzed. Results: While the epidemic curve was flattened, the results of the analysis show that the 4-week Spanish lockdown significantly reduced the PM2.5 levels in only one city despite the drastically reduced human activity. Furthermore, no associations between either PM2.5 exposure or environmental conditions and COVID-19 transmission were found during the early spread of the pandemic. Conclusions: A longer period applying human activity restrictions is necessary in order to achieve significant reductions of PM2.5 levels in all the analyzed cities. No effect of PM2.5 pollution or weather on COVID-19 incidence was found for these pollutant levels and period of time. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-022-00786-2.

15.
Epidemiologia (Basel) ; 3(2): 229-237, 2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820216

ABSTRACT

The scientific, private, and industrial sectors use a wide variety of technological platforms available to achieve protection against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), including vaccines. However, the virus evolves continually into new highly virulent variants, which might overcome the protection provided by vaccines and may re-expose the population to infections. Mass vaccinations should be continued in combination with more or less mandatory non-pharmaceutical interventions. Therefore, the key questions to be answered are: (i) How to identify the primary and secondary infections of SARS-CoV-2? (ii) Why are neutralizing antibodies not long-lasting in both cases of natural infections and post-vaccinations? (iii) Which are the factors responsible for this decay in neutralizing antibodies? (iv) What strategy could be adapted to develop long-term herd immunity? (v) Is the Spike protein the only vaccine target or is a vaccine cocktail better?

16.
Cell Signal ; 95: 110334, 2022 07.
Article in English | MEDLINE | ID: covidwho-1800158

ABSTRACT

Exosome trans-membrane signals provide cellular communication between the cells through transport and/or receiving the signal by molecule, change the functional metabolism, and stimulate and/or inhibit receptor signal complexes. COVID19 genetic transformations are varied in different geographic positions, and single nucleotide polymorphic lineages were reported in the second waves due to the fast mutational rate and adaptation. Several vaccines were developed and in treatment practice, but effective control has yet to reach in cent presence. It was initially a narrow immune-modulating protein target. Controlling these diverse viral strains may inhibit their transuding mechanisms primarily to target RNA genes responsible for COVID19 transcription. Exosomal miRNAs are the main sources of transmembrane signals, and trans-located miRNAs can directly target COVID19 mRNA transcription. This review discussed targeted viral transcription by delivering the artificial miRNA (amiRNA) mediated exosomes in the infected cells and significant resources of exosome and their efficacy.


Subject(s)
COVID-19 , Exosomes , MicroRNAs , Exosomes/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2 , Signal Transduction
17.
Polymers (Basel) ; 14(7)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776315

ABSTRACT

The current pandemic is urgently demanding the development of alternative materials capable of inactivating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus 2019 (COVID-19) disease. Calcium alginate is a crosslinked hydrophilic biopolymer with an immense range of biomedical applications due to its excellent chemical, physical, and biological properties. In this study, the cytotoxicity and antiviral activity of calcium alginate in the form of films were studied. The results showed that these films, prepared by solvent casting and subsequent crosslinking with calcium cations, are biocompatible in human keratinocytes and are capable of inactivating enveloped viruses such as bacteriophage phi 6 with a 1.43-log reduction (94.92% viral inactivation) and SARS-CoV-2 Delta variant with a 1.64-log reduction (96.94% viral inactivation) in virus titers. The antiviral activity of these calcium alginate films can be attributed to its compacted negative charges that may bind to viral envelopes inactivating membrane receptors.

18.
PeerJ ; 10: e13136, 2022.
Article in English | MEDLINE | ID: covidwho-1753927

ABSTRACT

Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.

19.
Stoch Environ Res Risk Assess ; 36(9): 2941-2948, 2022.
Article in English | MEDLINE | ID: covidwho-1708368

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), has led to the deepest global health and economic crisis of the current century. This dramatic situation has forced the public health authorities and pharmaceutical companies to develop anti-COVID-19 vaccines in record time. Currently, almost 80% of the population are vaccinated with the required number of doses in Spain. Thus, in this paper, COVID-19 incidence and lethality rates are analyzed through a segmented spatio-temporal regression model that allows studying if there is an association between a certain vaccination level and a change (in mean) in either the incidence or the lethality rates. Spatial dependency is included by considering the Besag-York-Mollié model, whereas natural cubic splines are used for capturing the temporal structure of the data. Lagged effects between the exposure and the outcome are also taken into account. The results suggest that COVID-19 vaccination has not allowed yet (as of September 2021) to observe a consistent reduction in incidence levels at a regional scale in Spain. In contrast, the lethality rates have displayed a declining tendency which has associated with vaccination levels above 50%.

20.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1650511

ABSTRACT

International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.


Subject(s)
Anti-Infective Agents/pharmacology , COVID-19/prevention & control , Coated Materials, Biocompatible/pharmacology , Metals/chemistry , Touch , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , COVID-19/transmission , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Humans , Pandemics , Personal Protective Equipment/microbiology , Personal Protective Equipment/virology , SARS-CoV-2/drug effects , Surface Properties , Viruses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL